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Introduction

Introduction � Special Functions & Fundamental Solutions

Main question of my research:

What can be learned about the properties of special functions by
studying separable solutions of linear homogeneous partial
di�erential equations which admit a fundamental solution.

Categories of PDEs:

Variety/Type (focus: elliptic � Laplace)

Order (polynomial generalizations)

Di�erentiable Riemannian manifolds
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Special Functions & Fundamental Solutions

The gamma function � Essential building block

Gamma function: For Re z > 0, Γ(z + 1) = zΓ(z)

Γ(z) :=
∫ ∞

0
tz−1e−tdt

Factorial: For n ∈ N0 := {0, 1, 2, 3, . . .} Γ(n+ 1) = n!

Euler re�ection formula: Γ(z)Γ(1− z) =
π

sinπz
Double factorial, · !! : {−1, 0, 1, . . .} → N := {1, 2, 3, . . .}, de�ned as

n!! :=


n · (n− 2) · · · 2 if n even ≥ 2,
n · (n− 2) · · · 1 if n odd ≥ 1,
1 if n = −1, 0.

Pochhammer symbol (rising factorial), (·)n : C→ C, de�ned as

(z)0 := 1, (z)n := (z)(z + 1) · · · (z + n− 1),

(a)n =
Γ(a+ n)

Γ(a)
(n ∈ N0)
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Special Functions & Fundamental Solutions

The Gauss hypergeometric function

Gauss hypergeometric function,

2F1 : C×C× (C \ −N0)× {z ∈ C : |z| < 1} → C, de�ned as

2F1(a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)nn!

zn,

Symmetry

2F1(a, b; c; z) = 2F1(b, a; c; z)

Unit value (only the �rst term survives)

2F1(0, b; c; z) = 2F1(a, 0; c; z) = 2F1(a, b; c; 0) = 1

Unit argument: For Re(c− a− b) > 0 and c 6∈ −N0

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

Hypergeometric polynomial: For n ∈ N0: 2F1(−n, b; c; z) is a

polynomial in z of degree n.
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Special Functions & Fundamental Solutions

Important hypergeometric polynomials

Jacobi polynomials, P
(α,β)
n : [−1, 1]→ R

P (α,β)
n (x) :=

(−1)n(−α− n)n
n! 2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x
2

)
Gegenbauer polynomials, Cµn : [−1, 1]→ R

Cµn(x) :=
(2µ)n

(µ+ 1
2)n

P (µ−1/2,µ−1/2)
n (x)

Chebyshev polynomials of the �rst kind, Tn : [−1, 1]→ R

Tn(x) =
1
εn

lim
µ→0

n+ µ

µ
Cµn(x),

where Tn(cosφ) := cos(nφ), and εn is the Neumann factor:

εn := 2− δn,0 =
{

1 if n = 0,
2 if n = 1, 2, 3, . . .

Legendre polynomials, Pn : [−1, 1]→ [−1, 1], Pn(x) := C
1/2
n (x).
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Special Functions & Fundamental Solutions

Transformations of the Gauss hypergeometric function

Transformations of the Gauss hypergeometric function

Kummer's 24 solutions: 2 exponents at each of the 3 possible
singular points, each of which appears 4 times due to Euler's and
Pfa�'s linear transformations of the Gauss hypergeometric
function

Euler 2F1(a, b; c; z) = (1− z)c−a−b2F1 (c− a, c− b; c; z)

Pfa� 1 2F1(a, b; c; z) = (1− z)−a2F1

(
a, c− b; c; z

z − 1

)
Pfa� 2 2F1(a, b; c; z) = (1− z)−b2F1

(
c− a, b; c; z

z − 1

)
Quadratic transformations of the Gauss hypergeometric function
(Legendre functions)
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Special Functions & Fundamental Solutions

Associated Legendre functions

Associated Legendre di�erential equation

(1− z2)
d2w

dz2
− 2z

dw

dz
+
[
ν(ν + 1)− µ2

1− z2

]
w = 0,

Ferrers function of the �rst kind: Pµν : (−1, 1)→ C
(associated Legendre function of the �rst kind on the cut)

Pµν (x) :=
1

Γ(1− µ)

[
1 + x

1− x

]µ
2

2F1

(
−ν, ν + 1; 1− µ;

1− x
2

)

Legendre function of the �rst kind: Pµν : C \ (−∞, 1]→ C

Pµν (z) :=
1

Γ(1− µ)

[
z + 1
z − 1

]µ
2

2F1

(
−ν, ν + 1; 1− µ;

1− z
2

)
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Special Functions & Fundamental Solutions

Ferrers function of the second kind

Ferrers function of the second kind, Qµ
ν : (−1, 1)→ C

Qµ
ν (x) :=

√
π2µ cos

[π
2

(ν + µ)
] Γ
(
ν+µ+2

2

)
Γ
(
ν−µ+1

2

)x(1− x2)−µ/2

×2F1

(
1− ν − µ

2
,
ν − µ+ 2

2
;
3
2

;x2

)

−
√
π2µ−1 sin

[π
2

(ν + µ)
] Γ
(
ν+µ+1

2

)
Γ
(
ν−µ+2

2

)(1− x2)−µ/2

×2F1

(
−ν − µ

2
,
ν − µ+ 1

2
;
1
2

;x2

)
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Special Functions & Fundamental Solutions

Associated Legendre function of the 2nd kind

Legendre function of the second kind, Qµν : C \ (−∞, 1]→ C

Qµν (z) :=
√
πeiπµΓ(ν + µ+ 1)(z2 − 1)µ/2

2ν+1Γ(ν + 3
2)zν+µ+1

×2F1

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3
2

;
1
z2

)

For instance, Magnus, Oberhettinger & Soni (1966) tabulates a
list of 36 di�erent ways to describe associated Legendre functions
of the �rst and second kind in terms of Gauss hypergeometric
functions.
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Special Functions & Fundamental Solutions

Fundamental solutions for homogeneous PDEs in Rd

Linear inhomogeneous partial di�erential equation (PDE)

L(x)Φ(x) = f(x)

given in terms of a partial di�erential operator:

L(x) = g

(
x1, . . . , xd,

∂

∂x1
, . . . ,

∂

∂xd

)
For certain linear operators a solution to the PDE can be obtained

Φ(x) = L−1(x,x′) f(x′)

through an integral inverse, in terms of a fundamental solution GL

Φ(x) = L−1f(x′) =
∫
GL(x,x′)f(x′) dx′

L(x)GL(x,x′) = δd(x− x′)

Fundamental solutions encapsulate the in�uence of a partial
di�erential operator over the entire space Rd.

Howard Cohl (NIST) Fourier, Gegenbauer and Jacobi October 25, 2011 11 / 48



Special Functions & Fundamental Solutions

PDEs which admit fundamental solutions and
special function solutions via separation of variables

Laplace's equation, polyharmonic equation, Helmholtz equation,

Hamilton-Jacobi equation, Wave equation, Heat equation,
Schrödinger equation, Klein-Gordon equation, higher order
extensions, and on certain di�erentiable manifolds, are examples

of operators which admit fundamental solutions

Investigation. What can be learned about the special functions
which naturally arise from fundamental solutions of linear partial
di�erential operators and the Fourier, Gegenbauer, and Jacobi
analysis of these fundamental solutions.

Main interest. Explore the properties of the classical special
functions, i.e. those which arise from the theory of separation of
variables from the homogeneous linear partial di�erential
equations of mathematical physics in real Euclidean space Rd
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Special Functions & Fundamental Solutions

Global analysis on d-dimensional Euclidean space Rd

Zero curvature d-dimensional Euclidean space Rd, �nite-dimensional

vector space with the Euclidean inner (dot) product
(·, ·) : Rd ×Rd → R de�ned for x,y ∈ Rd such that

(x,y) := x1y1 + x2y2 + . . .+ xdyd

Euclidean inner product for x ∈ Rd induces the Euclidean norm

‖x‖ =
√

(x,x)

Geodesic distance between two points x,y ∈ Rd is given by

d(x,y) = ‖x− y‖

Laplace-Beltrami operator (Laplacian) ∆ : Cp(Rd)→ Cp−2(Rd)
for p ≥ 2 is de�ned by

∆ :=
∂2

∂x2
1

+ . . .+
∂2

∂x2
d
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Special Functions & Fundamental Solutions

Fundamental solution of Laplace and polyharmonic equation

Laplace equation, Φ : Rd → R, harmonic

−∆Φ(x) = 0,

Polyharmonic equation, Φ : Rd → R, polyharmonic

(−∆)kΦ(x) = 0,

where k ∈ N := {1, 2, 3, . . .}
Fundamental solution of the polyharmonic equation

(−∆)kGdk(x,x′) = δ(x− x′)

where Gdk : Rd ×Rd \ {(x,x) : x ∈ Rd} → R

Howard Cohl (NIST) Fourier, Gegenbauer and Jacobi October 25, 2011 14 / 48



Special Functions & Fundamental Solutions

Fundamental solution of Laplace equation in Euclidean space

−∆Gd(x,x′) = δ(x− x′)

Theorem. Fundamental solution of Laplace's equation in d-dimensional

Euclidean space Rd

Let d = 1, 2, 3, . . .. De�ne Gd : Rd ×Rd \ {(x,x) : x ∈ Rd} → R, such
that

Gd(x,x′) =


Γ(d/2)

2πd/2(d− 2)
1

‖x− x′‖d−2
if d = 1 or d ≥ 3,

− 1
2π

log ‖x− x′‖ if d = 2,

then Gd is a fundamental solution for −∆, where ∆ is the Laplacian.
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Special Functions & Fundamental Solutions

Fundamental solution of the polyharmonic equation in Rd

(−∆)kGdk(x,x′) = δ(x− x′)

Theorem. Fundamental solution of the polyharmonic equation in Rd

Let d, k ∈ N. De�ne Gdk : Rd ×Rd \ {(x,x) : x ∈ Rd} → R, such that

Gdk(x,x′) =



(−1)k+d/2+1‖x− x′‖2k−d

(k − 1)! (k − d/2)! 22k−1πd/2
(
log ‖x− x′‖ − βk−d/2,d

)
if d even, k ≥ d/2,

Γ(d/2− k)‖x− x′‖2k−d

(k − 1)! 22kπd/2
otherwise,

where βp,d ∈ Q such that βp,d := 1
2

[
Hp +Hd/2+p−1 −Hd/2−1

]
, and

Hj ∈ Q is the j-th harmonic number H0 := 0, Hj := 1 + 1
2 + 1

3 + . . .+ 1
j ,

then Gdk is a fundamental solution of the polyharmonic equation.
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Separation of Variables � Coordinate Systems on Rd

Theory of separation of variables for (−∆)kf = 0

Symmetry group of polyharmonic equation is conformal group

Symmetries are di�erential operators which map solutions to

solutions

Conformal symmetries include inversions, re�ections, dilatations

These extra symmetries imply the existence of both simple and

R-separation of variables
R-separation yields extra coordinate systems

R3: quadrics � 2nd order surfaces which are two-dimensional
generalization of the conic sections

P2(x, y, z) = 0

R3: cyclides � 4th order surfaces

c(x2 + y2 + z2)2 + P2(x, y, z) = 0, c ∈ R

and their (d− 1)-dimensional generalizations

We look for rotationally invariant separable coordinate systems
all share trigonometric eimφ (poly-)harmonics
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Separation of Variables � Coordinate Systems on Rd

Subgroup-type rotationally-invariant coordinates
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Separation of Variables � Coordinate Systems on Rd

Separable rotationally invariant coordinate systems

R3 : Rotational (quadric)

R3 : Rotational (cyclidic)
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Separation of Variables � Coordinate Systems on Rd

Vilenkin's polyspherical coordinates

The method of trees: a method for constructing subgroup-type
coordinates on the d-dimensional hypersphere

Example: R2 - putting coordinates on S1

x1 = r cosφ

x2 = r sinφ

m

x
1

x
2
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Separation of Variables � Coordinate Systems on Rd

Vilenkin's polyspherical coordinates (cont.)

Example: R3 - putting coordinates on S2

x1 = r cos θ

x2 = r sin θ cosφ

x3 = r sin θ sinφ

l

m

x1 x2 x3

x1 = r cos θ cosφ

x2 = r cos θ sinφ

x3 = r sin θ

l

m

x1 x2 x3
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Separation of Variables � Coordinate Systems on Rd

Catalan numbers: 1,2,5,14,42,132,429,1430,4862,16796,58786,208012,. . .

Wedderburn-Ethernington numbers: 1,1,2,3,6,11,23,46,98,207,451,983,. . .
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Separation of Variables � Coordinate Systems on Rd

Fourier einφ, Gegenbauer Cµ
n(cos θ), and Jacobi P

(a,b)
n (cos θ)

analysis of a fundamental solution for (−∆)kΦ(x) = 0

We would like to perform Fourier eimφ, Gegenbauer Cµl (cos θ), and
Jacobi P a,bl (cos θ) analysis of a fundamental solution for the

polyharmonic equation

Perform an eigenfunction expansion of a fundamental solution of

the polyharmonic equation in a basis given by Chebyshev
polynomials of the �rst kind

Tn(cosφ) = cos(nφ)

and Gegenbauer polynomials

Gegenbauer polynomials with argument given in terms of the cos γ
are simply hyperspherical harmonics on x̂, x̂′ ∈ Sd−1
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Separation of Variables � Coordinate Systems on Rd

Separable rotationally invariant coordinate systems

Separable curvilinear coordinate systems are those which

transform (−∆)kΦ(x) = 0 into a set of d-uncoupled ODEs, each
separately in terms of ξi such that i = 1, 2, . . . , d, with
(d− 1)-separation constants.

Consider the following rotationally invariant coordinate system:

x1 = R(ξ1, ξ2, . . . , ξd−1) cosφ
x2 = R(ξ1, ξ2, . . . , ξd−1) sinφ
x3 = x3(ξ1, ξ2, . . . , ξd−1)

...

xd = xd(ξ1, ξ2, . . . , ξd−1)

Parametrize points on the (d− 1)-dimensional half-hyperplane
given by φ = const and R > 0 using separable curvilinear
coordinates (ξ1, ξ2, . . . , ξd−1).
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Separation of Variables � Coordinate Systems on Rd

Fourier expansions for a fundamental solution of (−∆)k

Expand, over the (d− 1)-separation constants, a fundamental
solution for (−∆)k in terms of separable poly-harmonics in each

rotationally invariant coordinate system.

Since all rotationally invariant coordinate systems share φ as an

azimuthal angle, one can always expand a fundamental solution of

the polyharmonic equation as a azimuthal Fourier cosine series
over cos(m(φ− φ′)) with m ∈ N0

In a (κ, d) rotationally invariant coordinate system, we can write

‖x− x′‖ =
√

2RR′
√
χdκ − cos(φ− φ′)

where χdκ > 1 is de�ned by

χdκ :=
R2 +R′2 + (x3 − x′3)2 + . . .+ (xd − x′d)2

2RR′
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Separation of Variables � Coordinate Systems on Rd

Example: (2, d) and (3, d) Euclidean-hyperspherical

Embedded 2 and 3 dimensional hyperspherical coordinates

!

m

x1 x2 x3 x4 xd

!
l

"

m

x1 x2 x3 x4 x5 xd
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Separation of Variables � Coordinate Systems on Rd

Example: (κ, d) Euclidean-hyperspherical coordinates

!
1

l1

!
2

l2

!
3

l3

!k-3
lk-3

!k-2
lk-2

"

m

x
1

x
2

x
3

xk-3 xk-2 xk-1 xk xk+1 xk+2 xd
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Eigenfunction Expansions � Addition Theorems

Addition theorem for hyperspherical harmonics

Addition theorem for hyperspherical harmonics

C
d/2−1
l (cos γ) =

2πd/2(d− 2)
(2l + d− 2)Γ(d/2)

∑
K

Y K
l (x̂)Y K

l (x̂′),

where x,x′ ∈ Sd−1, and K is a set of quantum numbers which label

representations for l in subgroup-type coordinates which parametrize
points on Sd−1.
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Eigenfunction Expansions � Addition Theorems

Fourier and Gegenbauer expansions: powers of the distance

‖x− x′‖ν =

√
2
π

eiπ(ν+1)/2

Γ (−ν/2)

(
2rr′

d−2∏
i=1

sin θisin θi′
)ν/2 (

χ2 − 1
)(ν+1)/4

×
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χ)

χ := χdd =

r2 + r′2 − 2rr′
d−2∑
i=1

cos θicos θi′
i−1∏
j=1

sin θjsin θj ′

2rr′
d−2∏
i=1

sin θisin θi′

‖x− x′‖ν =
eiπ(ν+d−1)/2Γ

(
d−2
2

)
2
√
πΓ
(
−ν

2

) (
r2> − r2<

)(ν+d−1)/2

(rr′)(d−1)/2

×
∞∑
λ=0

(2λ+ d− 2)Q(1−ν−d)/2
λ+(d−3)/2

(
r2 + r′2

2rr′

)
C
d/2−1
λ (cos γ)
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Eigenfunction Expansions � Addition Theorems

Example: Spherical coordinates on R3

‖x− x′‖ν =

√
2
π

eiπ(ν+1)/2

Γ (−ν/2)
(
2rr′ sin θ sin θ′

)ν/2 (
χ2 − 1

)(ν+1)/4

×
∞∑

m=−∞
eim(φ−φ′)Q

−(ν+1)/2
m−1/2 (χ),

χ =
r2 + r′2 − 2rr′ cos θ cos θ′

2rr′ sin θ sin θ′

‖x− x′‖ν = − eiπν/2

2Γ(−ν/2)
(r2> − r2<)(ν+2)/2

rr′

∞∑
l=0

(2l + 1)Q−(ν+2)/2
l

(
r2 + r′2

2rr′

)

×
l∑

m=−l

(l −m)!
(l +m)!

Pml (cos θ)Pml (cos θ′)eim(φ−φ′)
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Eigenfunction Expansions � Addition Theorems

Sum over con�guration space

Alternative double summations in (l,m) space (a) �rst over m at �xed l
to form partial sums ϑl (b) �rst over l at �xed m to form partial sums ϕm

0
2
4
6
8

10

l
(a)ϑ0

ϑ1

ϑ2

ϑ3

ϑ4

ϑ5

ϑ6

ϑ7

ϑ8

ϑ9

ϑ10

(b)

l

0
2
4
6
8

10

8
ϕ

-10
ϕ

-9
ϕ

-8
ϕ

-7
ϕ

-6
ϕ

-5
ϕ

-4
ϕ

-3
ϕ

-2
ϕ

-1
ϕ

0
ϕ

1
ϕ

2
ϕ

3
ϕ

4
ϕ

5
ϕ

6
ϕ

7
ϕ

8
ϕ

9
ϕ

10

-10 -8 -6 -4 -2 0 2 4 6 8 10
m
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Eigenfunction Expansions � Addition Theorems

Addition theorems in R3

General addition theorem

Q
−(ν+1)/2
m−1/2 (χ) =

i
√
π2−(ν+3)/2(sin θ sin θ′)−ν/2

(χ2 − 1)(ν+1)/4

(
r2> − r2<
rr′

)(ν+2)/2

×
∞∑

l=|m|

(2l + 1)
(l −m)!
(l +m)!

Q
−(ν+2)/2
l

(
r2 + r′2

2rr′

)
Pml (cos θ)Pml (cos θ′)

Addition theorem for ν = −1

Qm−1/2(χ) = π
√

sin θ sin θ′
∞∑

l=|m|

(l −m)!
(l +m)!

(
r<
r>

)l+1/2

Pml (cos θ)Pml (cos θ′)
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Generating Functions, Simpli�cations and Generalizations

Generating functions for orthogonal polynomials

Chebyshev polynomials of the 1st kind: Tn(cos θ) = cos(nθ)

1− xρ
1 + ρ2 − 2ρx

=
∞∑
n=0

Tn(x)ρn

Chebyshev polynomials of the 2nd kind: Un(cos θ) = sin((n+1)θ)
sin θ

1
1 + ρ2 − 2ρx

=
∞∑
n=0

Un(x)ρn

Gegenbauer polynomials

1
(1 + ρ2 − 2ρx)µ

=
∞∑
n=0

Cµn(x)ρn

Jacobi polynomials

2α+β

R(1− ρ+R)α(1 + ρ+R)β
=
∞∑
n=0

P (α,β)
n (x)ρn

where R =
√

1 + ρ2 − 2ρx. Should we study these?
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Generating Functions, Simpli�cations and Generalizations

The alg. functions
√

1 + ρ2 − 2ρx,
√
z − x from geometry

The distance between two points x,x′ ∈ Rd in a pure
hyperspherical coordinate system is given by

‖x− x′‖ =
√
r2 + r′2 − 2rr′ cos γ, (1)

where r = ‖x‖, r′ = ‖x′‖, and cos γ =
(x,x′)
rr′

. If you de�ne

r≶ := min
max{r, r

′}, then you can rewrite (1) as

‖x− x′‖ = r>

√
1 +

(
r<
r>

)2

− 2
r<
r>

cos γ,

or with ρ :=
r<
r>

, and x := cos γ we have

‖x− x′‖ = r>
√

1 + ρ2 − 2ρ cos γ,

where ρ ∈ (0, 1). The other option is:

‖x− x′‖ =
√

2rr′
√
z − x, where z =

1 + ρ2

2ρ
∈ (1,∞)
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Generating Functions, Simpli�cations and Generalizations

Generalizations of generating functions

The Chebyshev polynomials can also be de�ned in terms of
Gegenbauer polynomials

Chebyshev polynomial of the second kind

Un(x) := C1
n(x)

Chebyshev polynomial of the �rst kind

Tn(x) :=
1
εn

lim
µ→0

n+ µ

µ
Cµn(x),

Generalization of generating function for Gegenbauer polynomials

(z2 − 1)(ν−µ)/2−1/4

(z − x)ν
=

2µ+1/2Γ(µ)eiπ(µ−ν+1/2)

√
π Γ(ν)

∞∑
n=0

(n+µ)Qν−µ−1/2
n+µ−1/2(z)Cµn(x)

Generalization of generating function for Chebyshev polynomials

(z2 − 1)ν/2−1/4

(z − x)ν
=

√
2
π

e−iπ(ν−1/2)

Γ(ν)

∞∑
n=0

εnTn(x)Qν−1/2
n−1/2(z)
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Generating Functions, Simpli�cations and Generalizations

Super expansion for Cµ
n through various limiting procedures

The generalization of the generating function for Gegenbauer
polynomials produces the generalized Heine's identity in the limit

as µ→ 0.
Produces an analogous generalized identity for Chebyshev
polynomials of the second kind.

Produces Fourier and hyperspherical harmonic expansions for

arbitrary powers of the distance between two points between two

points in Euclidean space.

Through limit-derivative technique, produces Fourier and
Gegenbauer expansions for logarithmic fundamental solutions of
the polyharmonic equation

Produces expansions for (1− x)µ and (cf. Szmytkowski (2011)) for

(y − x)µ where x, y ∈ (−1, 1) and y > x.
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Generating Functions, Simpli�cations and Generalizations

Super expansion for P
(α,β)
n (x)?

Super expansion for Gegenbauer polynomials is a consequence of

expanding the generating function for Gegenbauer polynomials
Cµn(x) in terms of the complete set Cνn(x)
This expansions is consequence of connection formulae for

orthogonal polynomials which illustrate how one expands an

orthogonal polynomial of one index in terms of a �nite-sum over the

same orthogonal polynomial of a di�erent index.

One must identify the coe�cients of this expansion, which for

Gegenbauer and Jacobi polynomials are given in terms of a 3F2

hypergeometric function of unit argument, which can be expressed in

terms of a gamma functions using Watson's formula and Chu's
(2011) recent extension.
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Generating Functions, Simpli�cations and Generalizations

Generating functions for Jacobi polynomials

The Gegenbauer polynomial can be de�ned in terms of the

Jacobi polynomial.

Cµn(x) :=
(2µ)n(
µ+ 1

2

)
n

P (µ−1/2,µ−1/2)
n (x)

Relevant generating functions for generalization
∞∑
n=0

P (α,β)
n (x)

(α+ β + 1)n
(β + 1)n

ρn =
1

(1 + ρ)α+β+1

×2F1

(
α+ β + 1

2
,
α+ β + 2

2
;β + 1;

2ρ(1 + x)
(1 + ρ)2

)
and its companion

∞∑
n=0

P (α,β)
n (x)

(α+ β + 1)n
(α+ 1)n

ρn =
1

(1− ρ)α+β+1

×2F1

(
α+ β + 1

2
,
α+ β + 2

2
;α+ 1;

−2ρ(1− x)
(1− ρ)2

)
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Generating Functions, Simpli�cations and Generalizations

Legendre function representations of generating functions

Associated Legendre function representation

∞∑
n=0

P (α,β)
n (x)

(α+ β + 1)n
(β + 1)n

ρn =
(

2
ρ(1 + x)

)β/2
× Γ(β + 1)

(1 + ρ2 − 2ρx)(α+1)/2
P−βα

(
1 + ρ√

1 + ρ2 − 2ρx

)
Ferrers function representation

∞∑
n=0

P (α,β)
n (x)

(α+ β + 1)n
(α+ 1)n

ρn =
(

2
ρ(1− x)

)α/2
× Γ(α+ 1)

(1 + ρ2 − 2ρx)(β+1)/2
P−αβ

(
1− ρ√

1 + ρ2 − 2ρx

)
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Generating Functions, Simpli�cations and Generalizations

Extensions

∞∑
n=0

P (α,β)
n (x)(2n+ α+ β + 1)

(α+ β + 1)n
(β + 1)n

ρn =
(α+ β + 1)(1− ρ)

(1 + ρ)α+β+2

×2F1

(
α+ β + 2

2
,
α+ β + 3

2
;β + 1;

2ρ(1 + x)
(1 + ρ)2

)
and its companion

∞∑
n=0

P (α,β)
n (x)(2n+ α+ β + 1)

(α+ β + 1)n
(α+ 1)n

ρn =
(α+ β + 1)(1 + ρ)

(1− ρ)α+β+2

×2F1

(
α+ β + 2

2
,
α+ β + 3

2
;α+ 1;

−2ρ(1− x)
(1− ρ)2

)
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Generating Functions, Simpli�cations and Generalizations

Legendre function representations of extensions

Associated Legendre function representation of extension

∞∑
n=0

P (α,β)
n (x)(2n+ α+ β + 1)

(α+ β + 1)n
(β + 1)n

ρn =
(

2
ρ(1 + x)

)β/2
×(α+ β + 1)(1− ρ)Γ(β + 1)

(1 + ρ2 − 2ρx)(α+2)/2
P−βα+1

(
1 + ρ√

1 + ρ2 − 2ρx

)
Ferrers function representation of extension

∞∑
n=0

P (α,β)
n (x)(2n+ α+ β + 1)

(α+ β + 1)n
(α+ 1)n

ρn =
(

2
ρ(1− x)

)α/2
×(α+ β + 1)(1 + ρ)Γ(α+ 1)

(1 + ρ2 − 2ρx)(β+2)/2
P−αβ+1

(
1− ρ√

1 + ρ2 − 2ρx

)
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Generating Functions, Simpli�cations and Generalizations

Generalization of extension

Hypergeometric generalization

∞∑
n=0

P (α,β)
n (x)(2n+ α+ β + 1)m

(α+ β + 1)n
(β + 1)n

×2F1

(
m,−m+ 1;α+ β + 2n+ 2;

−ρ
1− ρ

)
ρn

=
(α+ β + 1)m(1− ρ)m

(1− ρ)α+β+m+1

×2F1

(
α+ β +m+ 1

2
,
α+ β +m+ 2

2
;β + 1;

2ρ(1 + x)
(1 + ρ)2

)

Howard Cohl (NIST) Fourier, Gegenbauer and Jacobi October 25, 2011 42 / 48



Generating Functions, Simpli�cations and Generalizations

Generalizations of extensions + Jacobi generating functions

Associated Legendre generalization
∞∑
n=0

P (α,β)
n (x)(2n+ α+ β + 1)(α+ β +m+ 1)2n

Γ(α+ β + n+ 1)
Γ(β + n+ 1)

×P−α−β−2n−1
−m

(
1 + ρ

1− ρ

)
=

ρ(α+1)/2(1− ρ)m

(1 + ρ2 − 2ρx)(α+m+1)/2

(
2

1 + x

)β/2
×P−βα+m

(
1 + ρ√

1 + ρ2 − 2ρx

)
And its companions
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Generating Functions, Simpli�cations and Generalizations

Generating function for products of Gegenbauer polynomials

Generating function for product of Gegenbauer polynomials

∞∑
k=0

k!
(2α)k

Cαk (x)Cαk (y)ρk = 2F1

(
α

2
,
α+ 1

2
;α+

1
2

;
4(1− x2)(1− y2)ρ2

(1 + ρ2 − 2xyρ)2

)

=
Γ
(
α+ 1

2

)
√
πΓ(α) (ρ sin θ sinφ)α

Qα−1

(
1 + ρ2 − 2ρ cos θ cosφ

2ρ sin θ sinφ

)
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Generating Functions, Simpli�cations and Generalizations

Generating function for Jacobi polynomials

Generating function for Jacobi polynomials

∞∑
n=0

P
(α−2n,β−2n)
2n (x)ρn = 2F1

(
−α
2
,
−α+ 1

2
;
1
2

; ξ
)

2F1

(
−β
2
,
−β + 1

2
;
1
2

; η
)

−1
4
αβ(1− x2)ρ2F1

(
−α+ 1

2
,
−α+ 2

2
;
3
2

; ξ
)

2F1

(
−β + 1

2
,
−β + 2

2
;
3
2

; η
)

=
(1− ξ)α/2(1− η)β/2

4

[(
1+
√
ξ√

1−ξ

)α
+
(

1+
√
ξ√

1−ξ

)−α] [(1+
√
η√

1−η

)β
+
(

1+
√
η√

1−η

)−β]

−ρ(1− x2)
4
√
ξη

[(
1+
√
ξ√

1−ξ

)α
−
(

1+
√
ξ√

1−ξ

)−α] [(1+
√
η√

1−η

)β
−
(

1+
√
η√

1−η

)−β]
where

ξ =
(1 + x)2ρ

4
, and η =

(1− x)2ρ
4

.
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Generating Functions, Simpli�cations and Generalizations

Generating function for Jacobi polynomials

Generating function for Jacobi polynomials
∞∑
n=0

P
(α−2n,β−2n)
2n+1 (x)ρn

=
(1− ξ)(α+1)/2(1− η)(β+1)/2

8
√
ξ

(x− 1)
[(

1+
√
ξ√

1−ξ

)α
+
(

1+
√
ξ√

1−ξ

)−α]

×
[(

1+
√
η√

1−η

)β
+
(

1+
√
η√

1−η

)−β]

+
(1− ξ)(α+1)/2(1− η)(β+1)/2

8
√
η

(x+ 1)
[(

1+
√
ξ√

1−ξ

)α
−
(

1+
√
ξ√

1−ξ

)−α]

×
[(

1+
√
η√

1−η

)β
−
(

1+
√
η√

1−η

)−β]
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Ongoing Investigations

Ongoing Investigations

A whole host of other Jacobi generating functions can be

expressed in terms of associated Legendre functions and Ferrers
functions, and in terms of the second kind.

Multi-summation (power-law and logarithmic) addition theorems

Analysis of special functions and fundamental solutions on
highly symmetric Riemannian manifolds
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